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An Exact Three-Dimensional Field Theory for
a Class of Cyclic H-Plane Waveguide Junction

RAY J. COPPLESTONE

Abstract—The device analyzed consists of g waveguides meeting in a
cavity with a central metal disk. A conducting boundary such as this occurs
in practical waveguide-junction circulators and the technique developed
here may find application in circulator field theory. A special case of the
geometry considered here is the ‘tuning screw’ which arises when g=2,

The method of analysis is by representing the fields by mode summa-
tion, in the usual way, and then matching to the metal surfaces and across
various imaginary internal boundaries. The device is assumed lossless.

The agreement between experimental and theoretical results is very
good, thus indicating the method is valid and has been formulated cor-
rectly.

Manuscript received February 13, 1978; revised August 4, 1978.
The author is with the Hirst Research Centre, the General Electric
Company, Ltd., Wembley, England.

I. INTRODUCTION

NTIL RECENTLY there had been little work pub-
lished regarding complete three-dimensional field
theories of waveguide junctions with application to circu-
lator geometry. Davies [1] in 1962 and El-Shandwily et al.
[2] in 1973 produced theories for H-plane circulators with
variation confined to the H-plane. Recently a method was
formulated for handling some of the three-dimensional
problems occurring in an E-plane waveguide-junction
circulator geometry [3].
An H-plane circulator design may assume the form of a
full height ferrite cylinder standing on a metal disk

0018-9480,/79 /0600-0577$00.75 ©1979 IEEE
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Fig. 1. General geometry of the cyclic H-plane g-port waveguide junc-

tion with central metal disk.

located centrally in the junction. The metal boundary of
such a circulator is given in Fig. 1, and defines the device
considered in this paper. The junction cavity is a true
cavity whose radius R, is a parameter. All other authors
appear to have considered junctions in which the wave-
guides intersect each other; i.e., for a cyclic g-port a fixed
cavity radius of a/(2 sin 7 /g) would have been used.

There are two main boundaries across which field-
matching takes place; these are the coordinate surfaces of
radii Ry and R; (the disk radius). On the inner side of the
radius R, there is dielectric (air) only, but on the outer
side there are both dielectric and metal. This considerably
complicates the process of matching the fields between the
waveguides and the cavity compared with that of refer-
ence [1]. At the dielectric—dielectric part of the interface
the tangential components of both the electric and mag-
netic fields are matched, but at the dielectric-metal part
only the tangential electric field is matched, i.e., set to
zero. The same principle is employed at the disk step at
the boundary of radius R,. The disk gives the problem a
three-dimensional nature, and field variation in the direc-
tion of the junction axis (z-axis) must be taken into
account throughout the whole junction, including the
waveguides. The resulting problem, even without the
ferrite, is considerably more complicated than the two-di-
mensional ferrite-loaded junction dealt with previously.
This paper does not treat the theory for the ferrite-loaded
or the ferrite-loaded and p-i-n-loaded junctions, but the
author has found that such an extension of the theory is
relatively straightforward compared with the problem of
the metal boundary.

Referring to Fig. 1, the disk radius is made to satisfy the
condition

R <R1-(a/QR))))"” (1)
in order that the matching interface of radius R, will
belong to the rectangular-cross-section portion of the
waveguides as well as to the cavity. This implies that for
the case of the limiting cavity, defined by intersecting
waveguides, the upper bound for R; for g=3 would be
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av/3/6. This would be a restriction in the application to
circulators and is one reason for using a true cavity.

Thus the method of analysis involves solving Maxwell’s
equations in three dimensions for the waveguides, the
outer cavity (Ry>r > R,), and the inner cavity (R, >r>0),
and matching the tangential fields at the coordinate
surfaces of radii Ry and R,. The resulting equations are
manipulated to lead to a set of linear equations whose
unknowns are the complex mode amplitudes for the wave-
guides and inner cavity. The device is assumed lossless
and the theory includes no approximations other than the
usual truncation of infinite series for computational pur-
poses.

II. WAaveGUIDE FIELDS

The waveguide is defined in Fig. 2, together with the
coordinate axes. In the usual way, the time dependence is
assumed to be given by exp {jwt}. Solving Maxwell’s
equations for the incident and scattered dominant mode
and all of the scattered evanescent modes, the following
expressions are obtained:

2 2 B, sin 2% sin % exp { —v,,x} )
p=14=1
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2 4, cos ==
pZO g=1 Ara b k(p,q) a
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b - i ) p=1g=1 " a k(p,q)
- cos 1? sin izz exp { —v,, %} (3)
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pr Joty . pmy qmz
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l\ incident wave

scattered wave

Fig. 2. Waveguide convention. The plane x=0 is the internal phase-
reference plane.
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where
k(p.q)=(pm/a)’+(qm/b)’ (3)

Yo =1{K(p. ) —ge0} 2 () #=(0,0).  (9)

The time dependent factor has been omitted. The 4,
and B,, define the amplitudes of the TE, and TM,,
modes. Only the TE,; mode propagates, all other modes
being evanescent. The amplitude of the incident dominant
mode is defined by 4.

I1II. Cavrry FIELDS

The cavity regions and the cylindrical coordinate sys-
tem are defined in Fig. 3. In this section a general for-
mulation is presented for the fields in such regions. In-
troducing the magnetic Hertzian vector potential [4], I1

E= —J'w!"ov,ﬁh (10)
H=V V 1I, (11)

(V2H ), =0,  k2=0wuge (12)

Then, setting I, =11, 2 for the TE modes (E,=0), equa-
tion (12) can be solved for IT, and subsequently all field
components follow from (10) and (11). A similar proce-
dure can be adopted for the TM-modes by introducing
the electric Hertzian vector potential II,. The general
mode fields for a cylindrical region of height A are then as
follows.

TM,,, modes:
E.=0 (13)
E,=0 (14)

F=12[. TN+ D. HY kN ] exo { ind} (15)
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Fig. 3. Numbering of regions of cavity.

— WEYH
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an
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T™,,,, modes (m+#0):
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-sin _mhlz exp {jn} (25)
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_ Jmnm n _2_ - —n—1
H,=—" {Am/ 1,(K,yr)+ B, —J Kn(kmr)]
-coS —@Z—Z exp {Jjno} (29)
2 .n 2 s—n~1
Hz == km,:Amn] In(kmr) + an;-/ Kn(kmr)J
-sin ﬁ;l—ri exp {jno}. (30)

In (13)-(30), J,(x) is the Bessel function of the first
kind, H{(x) is a Hankel function, and 1,(x) and K,(x)
are modified Bessel functions [5]. Also, k,,=+/|ki—
(mw/h)?|, where h is the height of the region (h=5 or
h=1).

IV. SIMPLIFICATION OF NOTATION

In order to simplify the field-matching procedure, the
following notation for the cavity-field expressions is in-
troduced:

@y = — Wk, J " llr:(kmri)

—n-22 1

G122 ™= _"-"U«okm/ 2-7—7_Kn(kmri) (31)

—jmnT .,
Q13 = Jhr‘ J In(kmri)

—jmnw ._, 12
Qyn14™ Jhr J 1_7;I<n(kmrz) (32)
Q21 =0
Cpnzy =0 (33)
Opn23 = — kr%ljnln(kmri)

12

Com24 = 311 1;Kn(kmri) (34)

jmn
s = T i1, (ko)

i

jmn 2 s—n—1

®pn32 ™= —h—;—W;.} Kn(kmri) (35)

Q33 = wEOkmjn— llr;(kmrx)

Qn3a = wEOkm %J o lKr:(km ri) (36)
Cpnar = kr%tjnln(kmrx)

2,
Xpna2 = — kl%l ;T—j 1Kn(km rz) (37)
g3 =0
Qnaa = 0. (38)

The radius 7, is an inner cylindrical-boundary radius. A
set of parameters §,,, is similarly defined for an outer
cylindrical boundary. Equations (13)-(30) can now be
united and summed over all mode numbers to yield the
following equations for the tangential fields on an inner
cylindrical boundary:
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o o0
Eq; = 2 (amnllAmn + amanan + amnlBCmn
m=1n=-—o
. mmwz .
amnl4Dmn) s €xp {jn¢} (39)
= - mnz
Ez = 2 2 (amn23 Cmn + Clmn24Dmn) COs
m=0 n=—x h
exp { jng) (40)
] 0
Hcp = 2 2 (amn3lAmn + amn32an + Xn33Cmn
m=0Q n=—0o00
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oo o0
Hz = 2 2 (amn41Amn + amn42an) sin i
m=1n=-—x h
exp {Jng). @)

Replacement of the a’s by the 8’s leads to similar sets
of equations for the tangential fields on an outer
boundary. For the purpose of matching region-3 to the
waveguides, parameters a, b, ¢, and d are introduced as
follows.

3)_ (3 3
af) =B A3+ BSaBS) + B CE) + B14DE)

(43)
b= BiasCon + BSha DS (4)
Con= B AGN+ B3 BE) + By CE + B34 DS

(45)
A =B A+ BB (46)

where superscript (3) refers to the region. Similarly for the
region-2--region-3 interface,

2 _ pl 2 2
em=BIAD+ BLuBR + B2 CA + BP1aDE)

47)
2 _
= B CR+ B2haDZ)  (48)
2 pQ 2 2
=B AR+ B2 BA+ B2 CA+ B2 DR
(49)
hZ = BRuAL+ B2 BE (50)
e =a A+ a@nBE + a5, CO + a4 DE)
1)
3)_
= D CA+ a0 D) (52)
3)_ (3 3
gom=0a AR+ a3 B + alD CR + o)y DE)
(53)
hfr?;); = ‘15334114 Er?r)zar(r?I)MZBr(r?r% . (54)

V. MATCHING REGION-2 TO REGION-3

Using expressions of the type shown in (39)-(42) for the
fields at the region-2-region-3 interface, and employing
the notation defined in (47)—(54), the matching procedure
leads to the following equations:
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2)_2 < _(_1) e
FIE T T e
(55)
fs%,>=§f33,> (56)
no2 & —(=DF 2
W=7 2 ’(/b) —p
=26+ 2 3 L sin 27 (59)
2)=E ™ (—l)fm ml ggr),
§=1 2, b - )
»_ 2 3 (=Uf . mal hS)
TR G

The values taken by »n are discussed in Section VI; here
they are simply defined thus: n=gk+», where g is the
number of waveguide ports, »=0,1,---,g—1, and k=
0,+1,%2,---. For computational purposes the infinite
series expressions for the fields are truncated. Thus the
maximum values for f, k, and m are F, K, and M.

For a given value of n a column vector for the region-2
coefficients appearing on the left-hand side of (55)-(60) is
defined as

(ReReIRDRReR - 1R).  (61)

Now let such vectors for k=0, k=1, k=-1, k=2, --

be strung together to form a column vector of all of the

e’s, f’s, g’s, and A’s of the outer boundary of region-2, and
denote the vector by {efgh(2)}’. Similarly

(f62 - - hSh) (62)
is defined for the inner boundary of region-3, and such
vectors are strung together to form a vector denoted by
{efgh(3)}’". Now the elements of {efgh(2)}’ and {efgh(3)}
are related according to (56)—(60), which may be written
in the compact form

{efeh(2)} =W {efgh(3)}’ (63)
where W is a nonsquare ‘block diagonal’ matrix of size

22K+ DRF+ 1D X22K+1D)2M+1). The blocks are
identical and of size 22F+ 1) X2Q2M +1).

Ist arc:

Y[e,z]

27 ]
2nd arc: ——,z|€x
nd ar 4/{(15 2 z} P { 2

Now let the 4’s, B’s, C’s, and D’s of the region-2 be
formed into a vector exactly corresponding to {efgh(2)}’.
This involves simply changing e to A, etc., giving
{ABCD(2)}'. The elements of these two vectors are re-
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lated according to (47)~(50) and, therefore, a matrix Z§” is

defined for the outer boundary of region-2 so that

{efeh(2)} =ZP{ABCD(2)}". (64)

The matrix is square, of order 2QK+ 1)(2F+2), and

block diagonal. Each block is of order (4 F+2) and is also

block diagonal with a leading block of order 2 and F
blocks of order 4. Similarly

{efeh(3)} =2 {ABCD(3))’ (65)

where Z® is the square block diagonal matrix of order

22K+ 1)(2M +1) for the inner boundary of region-3. The

elements of the matrix are the coefficients in (51)—(54).
Finally, (63)—(65) are combined to give

Z@{ABCD(2)Y =WZP{ABCD(3)}". (66)

Premultiplication by Z§ ! can be performed to express
the mode amplitudes of region-2 in terms of those of
region-3. However, this will not be done here because
there is no region-1 and Z$ needs special treatment. This
will be discussed in Section VII.

VL

In this section, a technique used by Davies [1] is em-
ployed. Since the junction under consideration is cyclic
with a g-fold axis, then the scattering matrix {S] is cyclic
and of order g. Its eigenvectors are, therefore, given by

CycLic BOUNDARY CONDITIONS

)?V= 1 (exp {]27”) }s exp {j47n} ]7'."1) (67)
Vg g g
and the corresponding eigenvalues, A, satisfy
Sx,=\x,, v=0,1,---,(g—1). (68)

Referring to Fig. 1, let Y(¢,z) for 0<¢ <27/g, —b<z
<0, and r= R,, denote a tangential field quantity over the
first arc of the region-3 boundary r= R,. That part of the
arc satisfying 7 /g —a<¢p<w/g+a is inside port number
1. .

Now, all of the ports are driven simultaneously with the
same input power but with different phases. The relative
phases are given by the components of an eigenvector;
thus the junction is driven with ‘eigenvector excitation.”
The boundary condition at r= Ry is, therefore,

0<¢<2?,—b<z<0 (69)
2—”<¢<ﬂ,~b<z<0 (70)
g g

b<z<0. (71)

Let the complete function specified by (69)-(71) be
denoted by ¥ and let superscripts (3) and (w) denote the
cavity side and waveguide side of the boundary. Then,
matching, orthogonalizing with respect to ¢, and using
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(69)(71), it is easily shown that
2n

j ¥ exp {—jn'¢} do
0

27
= gf /g\If(W)[¢,z] exp {—jn'¢}dp, n'=gk'+»
0 2
=0, for other »’ (72)
where k'=0, +1, £2,- -+, = K. This result shows that with

eigenvector excitation, it is only necessary to match at one
waveguide port. Also, the cavity region contains only
those modes for which the mode number n is equal to
r(mod g).

VII. MATCHING REGION-3 TO THE WAVEGUIDES

From (39)—(46) the tangential field components on the
boundary r= R, of region-3 are given by

M M
EP=3 3 asin == exp (jno}  (73)
m=1k=—K b
M M
EP= 3 3 b2 cos T exp {jne} (74
m=0 k=-K b
M M
HO=S 3 @ cos 2% exp {jnp}  (75)
m=0 k=~K b
M
HO= S 2 d$) sin T exp {jne}.  (76)

m=1k=—-K

Then, matching region-3 to the waveguides with the aid of
(72),

al) = ] f (W/g)+aE4(,w) sin _m;r Z exp {—jn'¢}dod:z

(7/8)—«
(77)
%?1 b§) = fob ((:/j)+aE-(w) exp { —jn'¢} dpdz (78)
- 7/8)—a
7/8)—a
(79)
X :
—x k—K)a
b 3 e~ 1y EREk =K
k=«2—K on(—1) glk—Kk)a
=f0 f((:/)g)+qu§w) exp { —jn'¢}dodz (80)
7/8)—«a
K 7
o pyk-w Sin gk~ K)a
bak=2—K (1) glk—k )a
‘f <(7f)+“Héw) cos T2 exp { —jn'p}dodz  (81)
7/g)—a
ba 2 d9 (- l)k—k’ sin g(k— k')«

=—K glk—k')a

- f() (7/g)+a
—bY(n/g)—a

The a’s, b’s, ¢’s, and d’s appearing on the left-hand side

of (77)—(82) can be assembled to form the vector

H™ sin 2 exp { —jn'dp}dodz. (82)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-27, NO. 6, JUNE 1979

{abcd(3)}’, and then X is the matrix defined such that
X{abcd(3)}' is the column vector whose elements are the
left-hand sides of these equations. For the right-hand sides
a column sub-vector is defined:

fo f(w/g)-f-a(E;w),Hqgw),E(gw) sin 7z EM™ cos ZT.Z_’
(

— b6/ (/g b’ b
H™ cos 2= H™ sin 22 . ,H™ sin MWZ)
¢ b’F b’
exp { —jn'¢}dpdz
(83)
then taking all such vectors for k'=0,1,—1,---,K, and

— K, a vector ¥V may be formed. Equations (77)—(82) may
now be expressed in the compact form

X{abcd(3)}' = V. (84)
The matrix is of order 22K+ 1)(2M + 1). Similar to Z{ in

(64), a matrix Z§? is defined for the outer boundary of
region-3 so that (43)-(46) may be written

{abcd(3)} =Z§P{ABCD(3)Y (85)

The matrix is of order 22K+ I)(2F+1). Equations (66),
(84), and (85) may be combined to yieid

ZP{ABCD(2)) =WZPZP ~ X"V, (86)

The procedure for determining ¥ is as follows. Since
matching takes place across arcs on the circle r= R, the
waveguide fields in (2)—(7) must be expressed in polar
coordinates. Thus on the boundary,

x=R0{cos (¢—§)—cos a} 87)

y=R, sin (¢~z) —Zq (88)

E{®=E™ cos ((i)— —) EM sin (qb g) (89)

H{"=H cos (qb— ) H®™ sin ( %) (90)

It can now be shown that ¥, of which (83) is a sub-vec-
tor, may be expressed in the form
V=YM (91)
where Y is a matrix of size 22K+ DM+ DX {P+1+
Q@2P+1)} and M is the column vector of waveguide
mode amplitudes 4,,,, B,,, with P and Q as the maximum
values of p and q. The vector M is formed from the
following sequence of (Q + 1) vectors:

(A3A10" =, Apg) (92)
(Ao, A4qys - App Byt Bpy) 93)
(A0Q>A1Q APQ>BIQ7 7BPQ)/ (94)

From (86) and (91),
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ZP{ABCD(2)Y =WZPZ ~'X~'YM.  (95)

This equation contains all of the mode amplitudes for
the waveguides and for region-2. In the case considered in
this paper there is no region-1 and, therefore, the region-2
field equations must not include Bessel functions with
poles at the origin. Therefore, in (95) alternate columns of
ZQ, starting with the second column, are deleted. The
corresponding alternate elements of {ABCD(2)}" are also
deleted. Then, the right-hand side of (95) is moved to the
left-hand side to form the equation

(FR)[¢/C]=][0]

where 7 is a column vector, R a matrix, ¢ a single element,
and C is the column vector of all scattered waveguide
mode amplitudes and central region-2 mode amplitudes,
and [0] is a null column vector, all of appropriate size.
Now c¢= A, the dominant waveguide mode amplitude for
the incident wave, and is defined to be unity at x =0, the
phase reference plane. Thus

(96)

o7

The number of equations here is 22K+ 1)(2F+ 1), and
the number of unknowns is K+ 1)2F+ 1)+ P+ Q2P+
1). Taking

RC=—7.

Q=M<P=2K+1 (98)
there is a deficiency of M equations, therefore, M of the
TM mode amplitudes are set to zero:

B,=0 p=P—M+1,P—M+2---,P. (99)
Equations (97) and (99) can now be solved together for
the mode amplitudes, in particular the scattered dominant
mode amplitude 4,,. Now since 4=1, then 4, is the
reflection coefficient. Furthermore since eigenvector ex-
citation is being used, then

A=A, (100)

VIIL

Theoretical and experimental eigenvalues have been
determined for four designs, viz., a two-port junction with
and without a central metal disk, and a three-port junc-
tion with and without a central metal disk. The devices
are specified in Figs. 4 and 5. The device in Fig. 4 has the
configuration of a tuning screw in a waveguide with slight
indentations.

The experimental results were obtained by making
slotted line measurements at one port only, using matched
load and/or fixed short-circuit terminations at the other
ports. The results were used to calculate the experimental
eigenvalues. A necessary condition for a lossless device is
|A,|=1. All of the theoretical results satisfied the condition
IR 1] 30001, and it was found that usually |A|=
1.000000. Experimental eigenvalues were ~0.97 in magni-
tude, this low value being consistent with loss in the
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—— plane of phase
/ reference

Waveguide size 22-86x10:16mm*

Cavity radius 12-4 mm
Disc radius 3-Smm
Disc thickness 3-Omm

Fig. 4. Experimental cyclic 2-port junction: ‘tuning-screw’ geometry.

120°

22-86 x 10-16mm?

Waveguide size

Cavity radius 18:O mm
Disc radius 10:Omm
Disc thickness 3-Omm

Fig. 5. Experimental cyclic 3-port junction.

2-port junction 2-port junction

300 1501
no dise
o
Ao e disc
250 ° 100+
2 no disc
disc
200 50
8 9 10 I 8 9 [e] 1] 12
GH, GH,
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no disc - K=3 M=l nodisc - K=4 M=
3-port junction 3-port junction
150 300 po disc
o no/dnsc ;
)\O l }‘l
200
coincident
theoretical
100} pon}ts 100
/
[o}
8 9 10 1 8 9 10 1 12
GHz GH,
disc : K=3 M=2 disc : K=3 M=2
nodisc: K=3 M=| no disc: K=3 M=

Fig. 6. Experimental (—) and theoretical (o) eigenvalue phases for the
two-port and three-port of Figs. 4 and 5, with and without the central
metal disk.

measurement system. The phases of the experimental and
theoretical eigenvalues over X band are plotted in Fig. 6.
The phase references for the eigenvalues are defined in
Figs. 4 and 5.
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The results shown in the figure are the best obtained for
these particular designs. Discrepancy between theory and
experiment is expected because i) the theory does not
account for loss, ii) the method of obtaining the experi-
mental eigenvalues from the measurements assumes there
is no loss, and iii) only a finite number of modes is
included (e.g., for A, for the 2-port with a disk, K=2,
M=4 means that the azimuthal spacial frequencies
accounted for are 0, =2, +4 (= *+gK), and in the z-direc-
tion modes with up to four half-wavelengths are in-
cluded). However, the correlation is very good.

For the 2-port case it is seen that the disk has a greater
influence on A, than on A,. This is to be expected since the
disk is of small radius and the stationary (for Ay) and the
rotating (for A,) junction modes have high and low electric
fields near the junction center. For the 3-port the disk has
little effect on A,. This suggests the edge of the disk isin a
region of low electric field. Indeed, the disk and no-disk
cases give the same result at 11 GHz and it is found that
the first root of Jy(wV pge, ) gives the result »=10.4 mm:
the disk radius is 10.0 mm. For the rotating junction made
the dominant field mode Bessel function, J,, is near a
maximum for the whole frequency band at the disk edge.
This means that the electric field is high and, therefore, a
high value of M is required for accurate results. It is,
therefore, not surprising that errors as large as 22° occur
in this case. Also, this particular eigenvalue is degenerate,
i.e.,, A;=A,, and numerical errors are expected in such
cases [1], although the results for the case of no-disk are
very good.
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IX. CONCLUSIONS

An exact three-dimensional field theory has been for-
mulated for a class of cyclic H-plane waveguide junction,
and a small number of designs have been briefly
evaluated to test the theory. The accuracy of the results is
very good, thus indicating the theory is valid and has been
programmed correctly. The problem solved here has in-
volved the organization of a large number of linear simul-
taneous equations with the aid of matrix notation. The
inclusion of extra dielectric or ferrite regions can be
achieved by defining the appropriate matrices and includ-
ing them in the matrix product occurring in the theory.
Additional metal disks can also be included by introduc-
ing the appropriate matrices. Thus the method developed
in this paper represents a principle for dealing with a
multistep pedestal, multidielectric, multiferrite-loaded
junction, with or without a central metal pin.
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On the Modeling of the Edge-Guided Mode
Stripline Isolators

SALVADOR H. TALISA, MEMBER, IEEE, AND DONALD M. BOLLE, SENIOR MEMBER, IEEE

Abstract—A model for the inhomogeneously ferrite-loaded microstrip
and stripline is considered. The structure consists of a loaded ferrite slab
between two infinite, perfectly conducting planes with the bias magnetiza-
tion perpendicular to the ground planes. The ferrite is taken to be lossy
and is loaded on one side by a semi-infinite lossy material and on the other
by a dielectric slab. The modal spectrum of this configuration as well as
the influence on the w-a and «-B diagrams of the various parameters
involved are studied. Special attention has been paid to the capabilities of
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this configuration to model a nonreciprocal isolator. A hypothetical isolator
is designed, and its characteristics are compared with experimental results
obtained by Hines, Dydyk, and Courtois. Substantial agreement is ob-
served.

I. INTRODUCTION
N INVESTIGATION of edge-guided waves propa-
gating in ferrite-loaded strip and microstriplines
magnetized perpendicular to the ground plane was ini-
tiated by Hines [1]-[3] in the late 1960’s. Hines deduced
that the dominant mode propagating through such struc-
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