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An Exact Three-Dimensional Field Theory for
a Class of Cyclic H-Plane Waveguide Junction

RAY J. COPPLESTONE

Abstract-The device anafyzed consists of g wavegufdes meeting in a

cavity with a centraf metal dfsk. A conducting bmmdary such as this oeeurs

in practfcaf wavegrride-jrmction circnlatom and the teehnique developed

here may find appffcation in circulator field theory. A speciaf case of the

geometry considered here is the ‘tuning screw’ which ariseR when g = 2.

The methad of anafysis is by representing the fields by mode sumrna-

tfonj fn the usoaf way, and then matching to the metaf surfaceR and across

v~ons ~ internaf hormdarfe5. The device is assumed Iossless.

The agreement between expirnentaf and theoretical resufts is very

go@ thns indieRtfng the method fs vafid and has been formnfated cor-

rectly.

Manuscript received February 13, 1978; revised August 4, 1978.
The author is with the Hirst Research Centre, the General Electric

Company, Ltd., Wembley, England.

I. INTRODUCTION

UNTIL RECENTLY there had been little work pub-

lished regarding complete three-dimensional field

theories of waveguide junctions with application to circu-

lator geometry. Davies [1] in 1962 and E1-Shandwily et al.

[2] in 1973 produced theories for H-plane circulators with

variation confined to the H-plane. Recently a method was

formulated for handling some of the three-dimensional
problems occurring in an E-plane waveguide-junction

circulator geometry [3].

An H-plane circulator design may assume the form of a

full height ferrite cylinder standing on a metal disk

001 8-9480/79/0600-0577$00.75 @1979 IEEE
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Fig. 1. General geometry of the cyclic H-plane g-port waveguide junc-

tion with central metal disk.

located centrally in the junction. The metal bounda~ of

such a circulator is given in Fig. 1, and defines the device

considered in this paper. The junction cavity is a true

cavity whose radius RO is a parameter. All other authors

appear to have considered junctions in which the wave-

guides intersect each other; i.e., for a cyclic g-port a fixed

cavity radius of a/(2 sin n/g) would have been used.

There are two main boundaries across which field-

matching takes place; these are the coordinate surfaces of

radii RO and Ri (the disk radius). On the inner side of the

radius RO there is dielectric (air) only, but on the outer

side there are both dielectric and metal. This considerably

complicates the process of matching the fields between the

waveguides and the cavity compared with that of refer-

ence [1]. At the dielectric–dielectric part of the interface

the tangential components of both the electric and mag-

netic fields are matched, but at the dielectric–metal part

only the tangential electric field is matched, i.e., set to

zero. The same principle is employed at the disk step at

the boundary of radius Ri. The disk gives the problem a

three-dimensional nature, and field variation in the direc-

tion of the junction axis (z-axis) must be taken into

account throughout the whole junction, including the

waveguides. The resulting problem, even without the

ferrite, is considerably more complicated than the two-di-

mensional ferrite-loaded junction dealt with previously.

This paper does not treat the theory for the ferrite-loaded

or the ferrite-loaded and p-i-n-loaded junctions, but the

author has found that such an extension of the theory is

relatively straightforward compared with the problem of

the metal boundary.

Referring to Fig. 1, the disk radius is made to satisfy the

condition

Ri <Ro(l - (a/(2 RO))2)1’2 (1)

in order that the matching interface of radius RO will

belong to the rectangular-cross-section portion of the

waveguides as well as to the cavity. This implies that for

the case of the limiting cavity, defined by intersecting

waveguides, the upper bound for R, for E = 3 would be

a ~ 3/6. This would be a restriction in the application to

circulators and is one reason for using a true cavity.

Thus the method of analysis involves solving Maxwell’s

equations in three dimensions for the waveguides, the

outer cavity (RO > r > Ri), and the inner cavity (R1 > r > O),

and matching the tangential fields at the coordinate

surfaces of radii RO and Ri. The resulting equations are

manipulated to lead to a set of linear equations whose

unknowns are the complex mode amplitudes for the wave-

guides and inner cavity. The device is assumed lossless

and the theory includes no approximations other than the

usual truncation of infinite series for computational pur-

poses.

11. WAVEGUIDE FIELDS

The waveguide is defined in Fig. 2, together with the

coordinate axes. In the usual way, the time dependence is

assumed to be given by exp {j~t }. Solving Maxwell’s

equations for the incident and scattered dominant mode

and all of the scattered evanescent modes, the following

expressions are obtained:

EX = ~ ~ Bpq sin ~ sin ~ exp { – YpqX } (2)
~=1 ~=1

.cos ‘~ sin ~ exp { -y,qx} (3)

E = –jq.to 7iy

z ————— sm ; (A exp { .lylOx} +~10 exP { ‘~YIOx})
77/a

+ $%
_ ~ p? jupo sin p~ Cos g~z— —_

‘q a k(p, g) a bp=lq=o
(;,9)7%0)

.exp{–ypqx}+ ~ ~ –Bpq~& sin%
p=lq=l

. cos ~ exp { – Ypqx)

Hx=cos %(A exp {jy,o.x}+A,o ew { –~YIOX})

mea

+ ~~ Apqcos F cos ~ exp { – ypqx }
ap=oq=o

(4)

(5)

(P,q)#(Qo)
#(l, o)

~ = –.hlo . T
Y ~ sm ---(A exp {jylox} –Alo exp { –jylOx})

fp jcxo sin ~ Cos 4TZ

+ PSI ~zl ‘pq~ k(p, q) a
— exp { – YpqX}

b

. . ..- (6)
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tz

Fig. 2. Waveguide convention. The plane x = O is the internal phase-
reference plane.

. sin ~ exp { – YP~x} (7)

where

/c(p, q) = (p77/a)2+ (q7r/b)2 (8)

Ypq= l{~(P24)-@2Po’o}’’21+ (P,4)+(Q>O). (9)

The time dependent factor has been omitted. The Apq

and Bpq define the amplitudes of the TEPg and TMP~

modes. Only the TEIO mode propagates, all other modes

being evanescent. The amplitude of the incident dominant

mode is defined by A.

HI. CAVITY R~LDS

The cavity regions and the cylindrical coordinate sys-

tem are defined in Fig. 3. In this section a general for-

mulation is presented for the fields in such regions. In-

troducing the magnetic Hertzian vector potential [4], ~~

Z= – jupoV. il~ (10)

(11)

(V’+ k;)rih=o, k:=td’pocm (12)

Then, setting fi~ = IIfi2 for the TE modes (E== O), equa-

tion (12) can be solved for IIk and subsequently all field

components follow from (10) and (11). A similar proce-

dure can be adopted for the TM-modes_ by introducing

the electric Hertzian vector potential II.. The general
mode fields for a cylindrical region of height h are then as

follows.

TMo~ modes:

l+ R,&RoJ

Fig. 3. Numbering of regions of cavity.

H,= ~ [ ConJn(kor)+ DOnHj’)(kor)] exp {jm)}

(116)

H+= – jaeoko[ Con.l~(kor) + DonH~l)’(kor) ] exp { jn+)

(117)

Hz= O. (118)

TMM~ modes (m # 0):

ET=
[ ~ “-n-2K~(k~’’”)l

‘j~km C~~n - lI;(k~r) + D.. ‘J

“sin % exp {jm$} (19)
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~ = jmn~
+

[
— A.JnI.(k.r) +

hr

.Cos ~ exp {jn+}

. sin ~ exp {jn@}c (30)

In (13)–(30), ~~(x) is the Bessel function of the first

kind, H~l)(x) is a Hankel function, and l.(x) and K.(x)

are modified Bessel functions [5]. Also, km= ~ Ik: –

(m~/h)21, where h is the height of the region (h= b or

h= 1).

IV. SIMPLIFICATION OF NOTATION

In order to simplify the field-matching procedure,

following notation for the cavity-field expressions is

the

in-

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

The radius r, is an inner cylindrical-boundary radius. A

set of parameters &HO is similarly defined for an outer

cylindrical boundary. Equations (1 3)–(30) can now be

united and summed over all mode numbers to yield the

following equations for the tangential fields on an inner

cylindrical boundary:

(41)

.exp {jn+}. (42)

Replacement of the a’s by the ~‘s leads to similar sets

of equations for the tangential fields on an outer

boundary. For the purpose of matching region-3 to the

waveguides, parameters a, b, c, and d are introduced as

follows.

where superscript (3) refers to the region. Similarly for the

region-2 –region-3 interface,

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

V. MATCHING REGION-2 TO REGION-3

Using expressions of the type shown in (39)-(42) for the

fields at the region-2 –region-3 interface, and employing

the notation defined in (47)–(54), the matching procedure

leads to the following equations:
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(55)

(58)

The values taken by n are discussed in Section VI; here

they are simply defined thus: n = gk + v, where g is the

number of waveguide ports, v = O, 1,. . . ,g – 1, and k =
(), fl, fz,. ..o For computational purposes the infinite
series expressions for the fields are truncated. Thus the

maximum values for f, k, and m are F, K, and M.

For a given value of n a column vector for the region-2

coefficients appearing on the left-hand side of (55)–(60) is

defined as

(f~~)g~~)e!tY[~)g\~)h\~)e$~) o.. h~~)’. (61)

Now let such vectors fork=O, k=l, k=–1, k=2,.. .

be strung together to form a column vector of all of the

e’s, f’s, g’s, and h’s of the outer boundary of region-2, and

denote the vector by { efgh(2)}’. Similarly

(J$) . . . hf)) (62)

is defined for the inner boundary of region-3, and such

vectors are strung together to form a vector denoted by

{efgh(3)}’. Now the elements of {efgh(2)}’ and {efgh(3)}’

are related according to (56)–(60), which may be written

in the compact form

{efgh(2)}’= W{efgh(3)}’ (63)

where W is a nonsquare ‘block diagonal’ matrix of size

2(2K+ 1)(2F+ 1)x 2(2K+ 1)(2M+ 1). The blocks are

identical and of size 2(2F+ 1)X 2(2M + 1).

1st arc: *[AZ]

—————————————————————————-—

Iated according to (47)–(50) and, therefore, a matrix Z$) is

defined for the outer boundary of region-2 so that

{efgh(2)}’=Z$2) {ABCD(2)}’. (64)

The matrix is square, of order 2(2K+ I)(2F+ 2), and

block diagonal. Each block is of order (4F+ 2) and is also

block diagonal with a leading block of order 2 and F

blocks of order 4. Similarly

{ efgh(3)}’ =Z$3){ABCD(3))’ (65)

where Z$3) is the. square block diagonal matrix of order

2(2K+ 1)(2M+ 1) for the inner boundary of region-3. The

elements of the matrix are the coefficients in (5 1)–(54).

Finally, (63)–(65) are combined to give

~2J{ABCD(2)}’= WZ:3){ABCD(3)}’. (66)

Premultiplication by Z~)- 1 can be performed to express

the mode amplitudes of region-2 in terms of those of

region-3, However, this will not be done here because

there is no region-1 and Z$’) needs special treatment. ‘IIis

will be discussed in Section VII.

VI. CYCLIC BOUNDARY CONDITIONS

In this section, a technique used by Davies [1] is em-

ployed. Since the junction under consideration is cyclic

with a g-fold axis, then the scattering matrix [S] is cyclic

and of order g. Its eigenvectors are, therefore, given b:y

‘V=+-(exp{%’l‘XP{%’)”””4’67)
and the corresponding eigenvalues, ~, satisfy

sYv=A#v, ~=ql,. .e ,(g-1). (68)

Referring to Fig. 1, let +(+, z) for 0<0< 2m/g, – b <z
< (), and r = Ro, denote a tangential field quantity over the

first arc of the region-3 boundary r= RO. That part of the

arc satisfying m/g – a <@<n/g+ a is inside port number

1.

Now, all of the ports are driven simultaneously with the

same input power but with different phases. The relative

phases are given by the components of an eigenvector;

thus the junction is driven with ‘eigenvector excitation.’

The boundary condition at r= R. is, therefore,

(69)

(70)

—————— ——— ——— ——— ——— ——— ——— —.—

[ 1{dare: 4 ~–~(g–l),z ew
j2wv
---#+) ) $(e0<c#K27r, –b<z<O. (71)

Now let the A ‘s, B ‘s, C’s, and D‘s of the region-2 be Let the complete function specified by (69)-(71) be

formed into a vector exactly corresponding to { efgh(2)}’. denoted by V and let superscripts (3) and (w) denote the

This involves simply changing e to A, etc., giving cavity side and waveguide side of the boundary. Then,

{A BCD(2)}’. The elements of these two vectors are re- matching, orthogonalizing with respect to ~, and using
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(69)-(71), it is easily shown that

J
“2”Y(3) ~xp { –~rz’cp} do

()
2f’f/g (w)

= g~ , ~ [AZ] ==p{ –jn’+} d+, n’=gk’+v

. 0, for other n’ (72)

where k’=O, tl, *2,... , Y K. This result shows that with

eigenvector excitation, it is only necessary to match at one

waveguide port. Also, the cavity region contains only

those modes for which the mode number n is equal to

v(mod g).

VII. MATCHING REGION-3 TO THE WAVEGUDES

From (39)–(46) the tangential field components on the

boundary r= RO of region-3 are given by

Then, matching region-3 to the waveguides with the aid of

(72),

@ U(3), = 0

H

‘“’g) + “E~) sin ~ exp { –jn’@} d+ dz
g ‘n –b (r/g)–a

(77)

‘b b(s),=
o

—— H
(./g\+ ~E$w) Cos y

exp { -jn’@} d+ dz
Em – b (m/g) – a

(79)

k ~sing(k–k’)a
2ba f Cjj;)(– 1) -

k=– K g(h k’)a

k k; Sill g(k – ti)a
ba ~ Cf~(– 1) -

k=– K g(k–k’)a

k ~ sin g(k – k’)a
ba ~ dfl;(– 1) -

k=-K g(k–k’)a

{ -jn’+} dodz (80)

{ -jn’@} d+dz (81)

. H
O (./g)+ “H$.) sip ‘~

exp { –jn’@} d~dz. (82)
– b (m/g) - a

The a’s, b’s, c’s, and d’s appearing on the left-hand side

of (77)–(82) can be assembled to form the vector

{abed(3)}’, and then X is the matrix defined such that

X{abcd(3)}’ is the column vector whose elements are the

left-hand sides of these equations. For the right-hand sides

a column sub-vector is defined:

. exp { – jn’+} d~dz

(83)

then taking all such vectors for k’= 0,1, – 1,. “ “, K, and

– K, a vector ~ maybe formed. Equations (77)–(82) may

now be expressed in the compact form

X{ abed(3)}’= ~. (84)

The matrix is of order 2(2K+ 1)(2M + 1). Similar to Z$2) in

(64), a matrix Z$3) is defined for the outer bounda~ of

region-3 so that (43)–(46) may be written

{abed(3)}’ =Z~3){ABCD(3)}’ (85)

The matrix is of order 2(2K+ 1)(2F+ 1). Equations (66),

(84), and (85) may be combined to yield

ZL2){ABCD(2) }’ = Wzpzjy - lx- 1j7. (86)

The procedure for determining ~ is as follows. Since

matching takes place across arcs on the circle r = RO, the

waveguide fields in (2)–(7) must be expressed in polar

coordinates. Thus on the boundary,

x=Ro[cos(@-;)-cosa] (87)

It can now be shown that ~, of which (83) is a sub-vec-

tor, may be expressed in the form

F= YG (91)

where Y is a matrix of size 2(2K+ I)(2M+ 1)X {P+ 1+
Q(2P + 1)} and ~ is the column vector of waveguide

mode amplitudes Ap~, Bp~, with P and Q as the maximum
values of p and q. The vector ~ is formed from the

following sequence of (Q+ 1) vectors:

(A,A,O, . “ c ,ApO)’ (92)
(AO1,A1l,. . . ,AP1, B1l,. . . ,Bpl)’ (93)
— ——————— —__ ___ __

(4Q>A,Q.” “ “ ,-4pQ,B, Q,” . “ ,BpQ)’. (94)

From (86) and (91),
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Z$2){ABCD(2)}’ = Wzpzp - k - WE. (95)

This equation contains all of the mode amplitudes for

the waveguides and for region-2. In the case considered in

this paper there is no region-1 and, therefore, the region-2

field equations must not include Bessel functions with

poles at the origin. Therefore, in (95) alternate columns of

Z~2J, starting with the second column, are deleted. The

corresponding alternate elements of {A BCD(2) }’ are also

deleted. Then, the right-hand side of (95) is moved to the

left-hand side to form the equation

(7 R)[c/C]= [O] (96)

where ; is a column vector, R a matrix, c a single element,

and ~ is the column vector of all scattered waveguide

mode amplitudes and central region-2 mode amplitudes,

and [0] is a null column vector, all of appropriate size.

Now c = A, the dominant waveguide mode amplitude for

the incident wave, and is defined to be unity at x = O, the

phase reference plane. Thus

R~= – i. (97)

The number of equations here is 2(2K+ 1)(2F+ 1), and

the number of unknowns is (2K+ 1)(2F+ 1) + P + Q(2P +

1). Taking

Q= M< P=2K+I (98)

there is a deficiency of M equations, therefore, M of the

TM mode amplitudes are set to zero:

BP~ = O p= P–M+l, P–M+2,. ... P. (99)

Equations (97) and (99) can now be solved together for

the mode amplitudes, in particular the scattered dominant

mode amplitude A IO. Now since A = 1, then A lo is the

reflection coefficient. Furthermore since eigenvector ex-

citation is being used, then

AIO=L. (loo)

VIII. EXPERIMENTAL AND THEORETICAL RESULTS

Theoretical and experimental eigenvalues have been

determined for four designs, viz., a two-port junction with

and without a central metal disk, and a three-port junc-

tion with and without a central metal disk. The devices

are specified in Figs. 4 and 5. The device in Fig. 4 has the

configuration of a tuning screw in a waveguide with slight

indentations.

The experimental results were obtained by making

slotted line measurements at one port only, using matched

load and/or fixed short-circuit terminations at the other
ports. The results were used to calculate the experimental

eigenvalues. A necessary condition for a lossless device is

I&l =1. All of the theoretical results satisfied the condition

I[kl -11>0.001, and it was found that usually 1~1=
1.000000. Experimental eigenvalues were -0.97 in magni-

tude, this low value being consistent with loss in the

Waveguide size 22.86 x10.16nrm2

Cavity radius 12.4 mm

Disc radius 3.5rnm

Disc thickness 30mm

Fig. 4. Experimented cyclic 2-port junction: ‘tuning-screw’ geometry.

147’

—

Wavcgwde size 22.86 x 10.16mm2

Cavity radius 18. Omm

DISC radius 100mm

Disc thickness 30mm

Fig. 5. Experimental cyclic 3-port junction.

2-pOrt junction 2-pOrt junctton
3004 150[

‘250E“’ook
2“” ~ so~

891011 89101112
Gtlz GHZ

dasc : K=2 !4=4 d Isc : K-4 M=l

nodlsc. K=3 M=l nodtsc. K=4 M=l

3-pOrt junction 3-port juncllon

150

L

h

no,d!sc

colnctdent

/ theoretical
100 d!sc pa,~ts

/

891011
GHZ

dtsc : K,3 M.2

nodlsc:K=3 M=l

h
no d!sc

300 ~

qoo ~

dtsc o

I00

o~
89101112

GH,

disc : K*3 M=2 -

nod&c:K=3 M=l

Fig. 6. Experimental (—) and theoretical (o) eigenvalue phases for the
two-port and three-port of Figs. 4 and 5, with and without the central
metal disk.

measurement system. The phases of the experimental and

theoretical eigenvalues over X band are plotted in Fig. 6.

The phase references for the eigenvalues are defined in

Figs. 4 and 5.
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The results shown in the figure are the best obtained for

these particular designs. Discrepancy between theory and

e~periment is expected because i) the theory does not

account for loss, ii) the method of obtaining the experi-

mental eigenvalues from the measurements assumes there

is no loss, and iii) only a finite number of modes is

included (e.g., for XO for the 2-port with a disk, K= 2,

M= 4 means that the azimuthal spatial frequencies

accounted for are O, *2, t 4 ( = ~ gK), and in the z-direc-

tion modes with up to four half-wavelengths are in-

cluded). However, the correlation is very good.

For the 2-port case it is seen that the disk has a greater

influence on& than on Al. This is to be expected since the

disk is of small radius and the stationary (for &) and the

rotating (for Al) junction modes have high and low electric

fields near the junction center. For the 3-port the disk has

little effect on ~. This suggests the edge of the disk is in a

region of low electric field. Indeed, the disk and no-disk

cases give the same result at 11 GHz and it is found that

the first root of YO(O% r) gives the result r = 10.4 mm:

the disk radius is 10.0 mm. For the rotating junction made

the dominant field mode Bessel function, Y,, is near a

maximum for the whole frequency band at the disk edge.

This means that the electric field is high and, therefore, a

high value of M is required for accurate results. It is,

therefore, not surprising that errors as large as 22° occur

in this case. Also, this particular eigenvalue is degenerate,

i.e., Al= & and numerical errors are expected in such

cases [1], although the results for the case of no-disk are

very good.

IX. CONCLUSIONS

An exact three-dimensional field theory has been for-

mulated for a class of cyclic H-plane waveguide junction,

and a small number of designs have been briefly

evaluated to test the theory. The accuracy of the results is

very good, thus indicating the theory is valid and has been

programmed correctly. The problem solved here has in-

volved the organization of a large number of linear simul-

taneous equations with the aid of matrix notation. The

inclusion of extra dielectric or ferrite regions can be

achieved by defining the appropriate matrices and includ-

ing them in the matrix product occurring in the theory.

Additional metal disks can also be included by introduc-

ing the appropriate matrices. Thus the method developed

in this paper represents a principle for dealing with a

multistep pedestal, multidielectric, multiferrite-loaded

junction, with or without a central metal pin.
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On the Modeling of the Edge-Guided Mode
Stripline Isolators

SALVADOR H. TALISA, MEMBER, IEEE, AND DONALD M. BOLLE, SENIOR MEMBER, IEEE

Abstnrct-A model for the inbomogeneously ferrite-loaded mfcreatrfp

and stripline is considered. The ShIIChUe COOSiStSof a loaded ferrite shb

between two iofiit% perfectly conducting planes with tfre bias magnetiza-

tion perpendicular to the ground planes. The ferrite is taken to be Inssy

and is loaded on one side by a semf-infibdte Ioasy nraterbd and on the other

by a dielectric slab. The modal spectrum of this confQuration as weff as

the influence on the M and ~(1 diagrams of the mrfous paromters

involved are studfed. Speciaf attention has been paid to the capabtities of
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this configuration to model a noorecfpromf isolator. A hypotbeticaf isolator
is &sign@ and its characteristics are mmpared with experimental reardta

obtained by libr~ Dydykj and Courtois. Srrbstantbd agreement fs ob-

served.

1. INTRODUCTION

A N INVESTIGATION of edge-guided waves propa-

gating in ferrite-loaded strip and microstriplines

magnetized perpendicular to the ground plane was ini-

tiated by Hines [ 1]–[3] in the late 1960’s. Hines deduced

that the dominant mode propagating through such struc-
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